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Abstract—This paper describes a computer sound synthesis 
system, based on artificial neural networks, that constructs 
a mapping between adjectives and adverbs that describe 
timbres, and sounds having those timbres. This is used in 
two ways: firstly, to recognize the timbral characteristics of 
sounds supplied to the system, and, secondly, to make 
changes to sounds based on descriptions of timbral change.

I. INTRODUCTION

Timbre is one of the most complicated characteristics of 
music. By contrast to other characteristics (e.g. rhythm, 
pitch, volume) there is no clear way to map the space of 
timbres and the dimensions within that space, nor is it 
easy to agree on a way of notating timbre [1]. 
Nonetheless, acoustic instrumentalists communicate 
about timbre using a wide variety of adjectives and 
adverbs. 

This lack of a systematic mapping between natural 
language and timbral features of sound makes it difficult 
for computer music systems to deal effectively with 
timbre. The aim of this paper is to describe a system that 
uses neural networks to learn the two core mappings 
involved in this relationship: the mapping from sounds to 
timbre-word descriptions, and the mapping from 
timbrewords to sounds and changes to sounds via a 
synthesis algorithm. 

There are two basic ways in which the idea of timbre 
has been used, as discussed in our earlier paper [2]. The 
first of these is referred to as gross timbre, and refers to 
the placement of sounds into a number of large, discrete 
categories. The canonical example of this is the use of the 
word timbre to mean the sound of a particular instrument: 
“a violin timbre”, for example. McAdams et al. [3] have 
developed a timbre-space for gross timbre, and work such 
as that by Kostek [4] has applied machine learning 
techniques to identify gross timbre. The main aim of this 
kind of work is recognition, i.e. mapping sounds to words; 
this is used, for example, in automatically tagging sound 
files with metadata. 

The second main use of the term timbre is adjectival 
timbre [2]. This is the use of words that describe how a 
sound is different from a neutral sound, how sound 
changes over time, or the sound produced by a particular 
technique on an instrument. For example, words such as 
“metallic”, “reedy”, “harsh” and “bright” fit into this 
category. Typically, these are words that: (1) describe a 
material that produces sound of that type, (2) provide an 
analogy with some visual or textural feature of objects, or 
(3) describe some emotional or perceptual quality of the 
sound. 

A small amount of work has been carried out on 
recognizing adjectival timbre: for example, the work by 
Disley and Howard [5] is aimed at recognising the 
features of pipe organ stops. Work by Etherington&Punch 
[6], Miranda [7] and Vertegaal&Bonis [8] is aimed at 
synthesising sounds given a particular timbre word or set 
of words—the work described in this paper can be seen as 
a continuation of that idea.  In particular, we aim for a 
more general system whose implementation is not tied to a 
specific set of timbral characteristics as in [6] and [8], and 
can instead be trained by example to recognise and 
synthesise arbitrary characteristics. 

The work in the remainder of this paper is focused on 
adjectival timbre, and describes the use of neural networks 
for timbre recognition and the synthesis of sounds with a 
particular timbre. The overall concept is illustrated in 
figure 1. The timbre classifier algorithm is trained on 
some listener-classified sound samples; this classifier 
algorithm is then used to train a second algorithm which 
represents the changes that need to be made to synthesis 
parameters in order to effect a particular change in the 
sound.  

The remainder of the paper divides into three parts. 
Firstly, we give an overview of the system. Secondly, we 
discuss how sounds are represented in the system. Finally, 
we discuss how the neural networks are trained. 

II. SYSTEM OVERVIEW

The system uses a pair of neural networks at its core for 
recognition and synthesis of timbre (figures 2 and 3). 
Additive synthesis is used to produce sound, however the 
complex set of parameters for this synthesis algorithm is 
hidden from the user. Instead, the user interface provides 
simple controls labelled with timbral adjectives which are 
used to describe the desired timbre, and the system 
automatically adjusts the internal synthesis parameters 
appropriately. 

The system is used by firstly loading a sample of an 
instrument from a wave file. The audio is analysed to 
extract additive synthesis parameters from the audio, 
consisting of amplitude and detuning envelopes for each 
harmonic. However, this representation is unsuitable for 
use with neural networks. Not only is this representation 
complex, but worse still the number of synthesis 
parameters required for a sound depends on the duration 
of the audio sample. A longer sound requires more 
parameters than a short sound. A different representation 
is therefore used for compatibility with a neural network 
which has a constant number of inputs/outputs. This 
representation has a fixed number of parameters, and also 
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Fig. 1. An overview of the system: the relationships between words and sound features are learned indirectly. 
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Fig. 2. Neural network for recognition of timbral features. 
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Fig. 3. Neural network for sound synthesis control. 
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reduces the complexity of the data by keeping only the 
most perceptually important information.   

Once the sound has been analysed and the simplified 
representation created, the values are processed using the 
timbre recognition neural network. This network is trained 
to take a list of sound parameters as its input and map 
them onto outputs representing a description of the timbre. 
Each output value corresponds to a certain adjective, and 
the value ranges from 0 to 1 to indicate how strongly that 
characteristic is present in the sound. The graphical 
interface is then updated to display to the user how the 
timbre has been characterised. It is then possible to specify 
a change to one feature of the timbre, while keeping other 
characteristics of the sound unchanged. 

Once the user has set the description of the desired 
sound, the system must modify the parameters of the 
synthesis algorithm in order to produce the required 
change in timbre. This involves using the synthesis neural 
network which has been trained to map a set of timbre 
description values onto the simplified sound 
representation. 

Finally, this data is used to transform the low-level 
additive synthesis parameters. The user can then use a 
MIDI keyboard to play the new sound through the 
synthesis engine. 

III. SOUND REPRESENTATION

The primary requirements of the sound representation 
use in the system are:

• to reduce the dimensionality of the additive synthesis 
parameters • to present the information in a form that 
makes significant patterns easier to identify  

• to move from an additive synthesis representation 
which has a variable number of parameters to a fixed 
number of parameters which are suitable for use with a 
neural network.  
• to be general enough to allow a useful range of sounds 

to be represented. 
The representation is informed by various studies on 

timbre (e.g. [3]) that identify perceptually significant 
features. However, most of this work is concerned with 
timbre recognition, and many features that are useful for 
recognition do not work as well for synthesis. For 
example, the spectral centroid is a common measurement 
which measures the average frequency, weighted by 
amplitude, of a spectrum. This is useful for timbre 
classification tasks since it correlates strongly with 
brightness. While the spectral centroid can be calculated 
from a sound spectrum, it is obviously not possible to 
calculate an inverse to reconstruct the original spectrum 
from a spectral centroid value. This measure is clearly 
more suited to timbre categorisation tasks than synthesis. 

The information required to represent a sound can 
broadly be classified as either spectral or temporal. 

Spectral features measure the relative amplitudes of the 
various frequency components in a sound. Temporal 
features are concerned with how a certain aspect of the 
sound changes over the duration of a note. 

An overview of the sound representation designed for 
this system is shown in table I below. A prominent feature 

of this system is that spectral information is stored using a 
list of peak amplitudes for the first 64 harmonics. This is a 
relatively low-level representation compared to the 
spectral measures commonly used in the literature, such as 
the spectral centroid or ratio of odd/even harmonics. This 
representation retains more of the information required for 
synthesis, whereas other measures are more suited to 
categorisation than synthesis tasks. It is a generic 
representation that does not need to make assumptions 
about what patterns in the harmonic amplitudes are 
perceptually significant. Instead, it is left to the neural 
network to discover patterns in the harmonics during 
training; this could include the patterns that are 
traditionally used as input into such algorithms, or it could 
discover new patterns. This generality comes at the cost of 
having a relatively high number of parameters to represent 
a sound, and requiring more work to successfully train the 
neural network. 
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Fig. 4. Features of the amplitude envelope. 

The amplitude envelope of the sound is summarized 
using four measurements: attack time, release time, attack 
curve, and release curve. Figure 4 shows how these 
measures describe an amplitude envelope.  

The amplitude envelope is the primary source of 
information for determining the articulation of the 
instrument sound. Plucked, bowed, and percussion 
instruments have recognisable envelope shapes. For 
instance, percussion sounds have short attack and release 
times, whereas plucked instruments have a short attack 
with a longer release. The model makes certain 
simplifying assumptions, namely that is an attack section 
where the amplitude increases, and this is followed by a 
release section where the amplitude fades towards silence. 
A best-fit curve is calculated for each section to 
approximate its shape. 

IV. TRAINING THE NEURAL NETWORKS

A training set is constructed by firstly choosing a 
selection of adjectives for the timbral characteristics that 
need to be controlled. A number of instrument samples are 
needed, each recording consisting of a single note. The 
sounds in the training set must adequately demonstrate all 
the timbral characteristics that need to be learnt. For 
instance, if one of the chosen adjectives is “brightness”, 
then a range of sounds ranging from very bright to very 
dull need to be included. Once a set of sounds has been 
collected, the training set is completed by performing 
listening tests to assign each sound a rating for each 
adjective. Ratings are in the range 0-1, with zero 
indicating the adjective does not apply to the sound, 
whereas a value of one is used when the characteristic 
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TABLE I.

Fig 5.  A screenshot of the application 

is strongly present in the sound. For many of our 
experiments, we have used data from an experiment by 
Darke [9].  This consists of recordings of 15 orchestral 
instruments, along with listener ratings of the sounds for 
12 adjectives (clear, brassy, bright, full, hard, harsh, 
metallic, muted, nasal, reedy, thin and wooden). 

When the training set has been assembled, the separate 
recognition and synthesis neural networks are trained. The 
sound samples are analysed and stored using the compact 
sound representation discussed earlier. The recognition 
network is then trained to map an input sound onto the 
timbre description given in the listening tests. The 
synthesis network is then trained to perform the inverse 
mapping, taking a timbre description as input and 
outputting a sound representation. 

V. CONCLUSIONS

In this paper we have described a machine learning 
method for associating timbre words with sounds. This 
includes both networks for timbre recognition, and for 
modifying synthesis parameters based on a given set of 
words. 

This system has been implemented and a series of 
listening trials are currently underway to determine the 
effectiveness of the system. A screenshot showing the 
interface can be found in figure 5. Results from an earlier 
version of the system, based on evolutionary computation 
methods, can be found in [2]. 

SUMMARY OF MEASURES USED TO REPRESENT A SOUND

Number  Value name  Description
1-64 Harmonic amplitudes  Peak amplitude of the first 64 harmonics  

Rate at which the amplitude of higher harmonics decay compared to lower 
harmonics (i.e. sound becomes duller over time) 65 Harmonic damping  

66 Attack time  Time taken for amplitude to reach maximum amplitude  
67 Release time  Time from maximum amplitude to end of note  
68 Amplitude attack curve  Describes the general shape of the attack section of the amplitude envelope  
68 Amplitude release curve  Curve of the release part of the amplitude envelope  
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